CLARIO.

Six precise gait measures, captured with body-worn inertial sensors during a 6-minute walk test, discriminate Multiple Sclerosis from healthy controls while gait speed does not

Vrutangkumar V. Shah^{1,2*}, Kristen Sowalsky¹, and Fay B. Horak^{1,2}

¹APDM Wearable Technologies-a Clario company, Portland, OR, USA; ²Department of Neurology, Oregon Health & Science University, Portland, OR, USA

Aim

Background: : Gait deficits are common in Multiple Sclerosis (MS) but poorly captured by stopwatch-timed tests or rating scales. Body-worn inertial sensors can detect precise gait abnormalities in people with MS who have normal walking speed but the most discriminative measures of gait for MS are unknown.

Aim: This study aimed to determine the best combination of gait measures to discriminate MS from healthy control (HC) subjects.

Methods

Protocol

• Participants wore 6 inertial sensors (2 feet, 2 wrists, 1 sternum and 1 lumbar; Opal by APDM Wearable Technologies, a Clario company)

Feature Selection Method

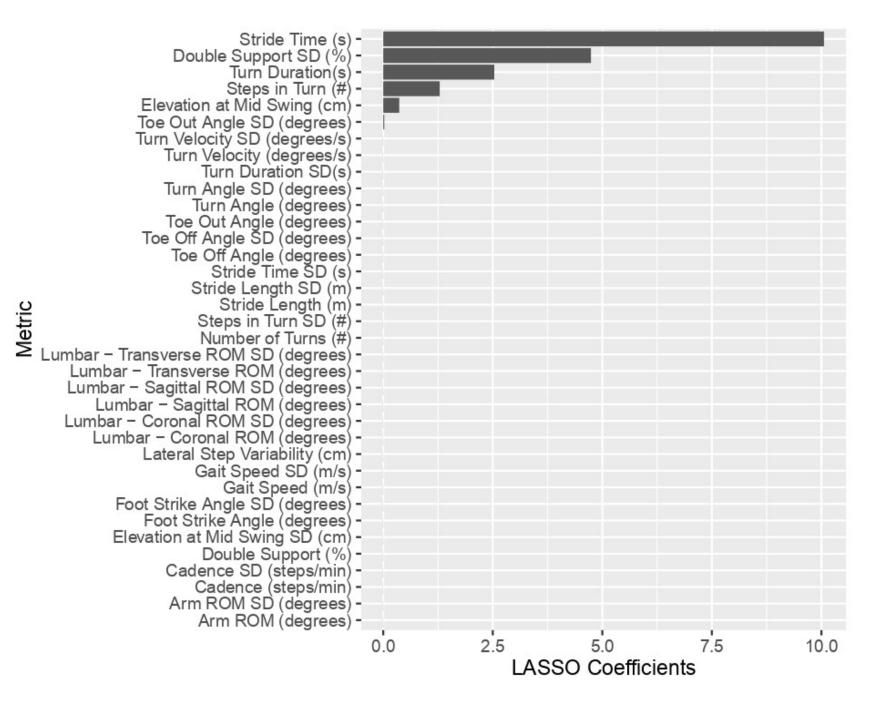
- Least Absolute Shrinkage and Selection Operator • (LASSO)
- 5-fold, cross-validated LASSO
- Selected features are used to train 70% of the dataset • of Study I using logistic regression
- Trained model validated on 30% of Study I •
- To test the generalizability of the proposed model, we • applied the same mode on independent data (Study II)
- The area under the curve (AUC) of receiver operator • characteristic (ROC) curves was used to evaluate the discriminate ability of the proposed model

Results

The proposed model applied to a totally independent dataset (Study II) resulted in AUC=0.92 (sensitivity=0.89, specificity=1)

- 6 min-walk test: Participants were instructed to walk at a comfortable and natural pace back and forth continuously over two lines of tape placed 30 meters apart (Study I) and 15 meters apart (Study II).

6-minute walk test


Development dataset [Study I: Walkway length=30 meters] (MS=14 and HC=17)

Stand/ Turn Turn 30 meters Tape & Cone Tape & Cone

Test dataset [Study II: : Walkway length=15 meters] (MS=9 and HC=7)

Digital Measures from 6-minute Walk Test

Gait Speed Stride Length Cadence **Stride Duration Step Duration** Lower **Double Support**

- From 36 gait measures, LASSO selected 6 measures from the training dataset:
 - 1. Stride time
 - Variability of double support time 2.
 - 3. Turn duration
 - Total number of steps in a turn 4.
 - Elevation at mid-swing 5.
 - Toe-out angle standard deviation 6.

Gait speed was not selected

Body

% Swing of Gait Cycle **Elevation at Mid Swing Pitch at Toe Off Pitch at Initial Contact**

Upper **Body**

Transverse Range of Motion Sagittal Range of Motion Coronal Range of Motion

Turn Angle Turn Duration Turn Rate Average Number of Steps in Turn **Turn Jerk Medio-lateral Turn Range**

Variability

Coefficient of Variability of all gait measures

Logistic regression trained with the 6 gait measures on 70% of Study I resulted in AUC=1 (sensitivity=1 and specificity=1) when applied on the validation dataset (30% of Study I)

Conclusion

The best combination of gait measures for accurate classification of MS from HC gait during the 6-minute walk test did not include gait speed. Digital gait measures show promise for endpoints in clinical trials.

Acknowledgements

We thank our participants for generously donating their time to participate. This research was funded DoD grant # MS170133, the Collins Medical Trust (Portland, OR), and the Medical Research Foundation (Portland, OR).

Conflict of Interest

Drs. Shah, and Horak are employees of APDM Wearable Technologies, a Clario company that may have a commercial interest in the results of this research and technology. This potential conflict of interest has been reviewed and managed by OHSU.